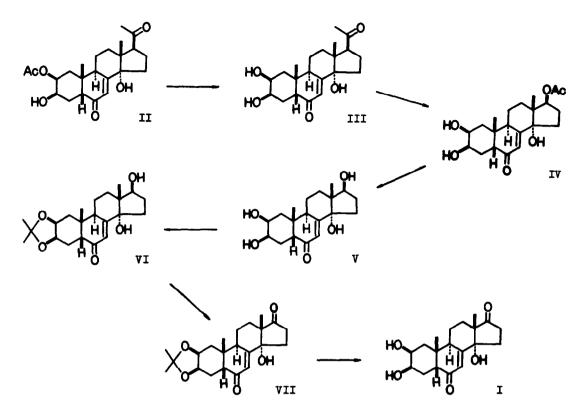
SYNTHESIS OF RUBROSTERONE.

A METABOLITE OF INSECT-MOULTING SUBSTANCES FROM ACHYRANTHES RUBROFUSCA

H. Hikino, Y. Hikino, and T. Takemoto


Pharmaceutical Institute, School of Medicine, Tohoku University, Sendai, Japan.

(Received in Japan 15 June 1968; received in UK for publication 5 July 1968)

Rubrosterone $(I)^{1}$ is the novel steroid which has been isolated first from <u>Achyranthes</u> <u>rubro-</u> <u>fusca</u> Wight² and later from <u>A. fauriei</u> Léveillé et Vaniot³ (Amaranthaceae). Since these plants also contain the insect-moulting substances, ecdysterone and inokosterone,²⁻⁴ rubrosterone is considered to be most probably a metabolite of these steroids in the plants. Of interest biologically is that rubrosterone shows little insect-moulting hormone activity, while it still exhibits high stimulating effect on protein synthesis in mouse. A synthesis confirming both structure and absolute configuration is now presented.

 2β -Acetoxy- 3β , 14α -dihydroxy- 5β -pregn-7-ene-6, 20-dione (II), derived from ecdysterone⁵) which has already been synthesized⁶, was hydrolyzed to give the known methyl ketone (III)⁷) which on pertrifluoroacetic acid oxidation afforded the acetate (IV), m.p. $226-228^{\circ}$, ν_{max} 3420 (hydroxyl), 1727, 1242 (acetoxyl), and 1645 cm^{-1} (cyclohexenone). Hydrolysis of the acetate (IV) with potassium carbonate in aqueous methanol yielded the tetra-ol (V), m.p. $268-270^{\circ}$, ν_{max} 3340 (hydroxyl) and 1648 cm^{-1} (cyclohexenone). When the corresponding acetonide (VI), m.p. $246-248^{\circ}$, ν_{max} 3360(hydroxyl) and 1645 cm^{-1} (cyclohexenone), prepared with acetone in the presence of p-toluenesulfonic acid, was oxidised with chromium trioxide-pyridine complex the ketone (VII), m.p. $247-248.5^{\circ}$, ν_{max} 3400 (hydroxyl), 1731 (cyclopentanone), and 1677 cm^{-1} (cyclohexenone), was obtained. Treatment of the acetonide (VII) with aqueous ethanol under reflux furnished the diketo-triol, m.p. $246-248^{\circ}$ (decomp.), ν_{max} 3410 (hydroxyl), 1741 (cyclopentanone), and 1641 cm^{-1} (cyclohexenone), which was identified as the natural rubrosterone (I).

Preparation of these intermediates (II-VII) with a variety of structural modifications led us to examine their biological activities. In the <u>Sarcophaga</u> test, however, none of them gave positive responses when injected in a dosage of 1 µg per isolated larval abdomen. On the other hand, the methyl ketone (III) induced enhancement of protein anabolism in mouse liver, though the

other analogues (II, IV-VII) showed no activity. These data will contribute to the structureactivity correlation study on the ecdysone derivatives.

We thank Prof. M. Uchiyama, this Institute, for the biological assay (mouse).

FOOTNOTE AND REFERENCES

* Melting points are uncorrected. IR spectra were determined in KBr disk.

- 1) T. Takemoto, Y. Hikino, H. Hikino, S. Ogawa, and N. Nishimoto, Tetrahedron Letters, in press.
- 2) T. Takemoto, S. Ogawa, N. Nishimoto, and S. Taniguchi, <u>Yakugaku Zasshi</u>, <u>87</u>, 1478 (1967).
- 3) T. Takemoto, S. Ogawa, N. Nishimoto, H. Hirayama, and S. Taniguchi, unpublished data.
- 4) T. Takemoto, S. Ogawa, and N. Nishimoto, Yakugaku Zasshi, 87, 325, 1469, 1474 (1967).
- 5) T. Takemoto, Y. Hikino, S. Arihara, H. Hikino, S. Ogawa, and N. Nishimoto, <u>Tetrahedron Letters</u>, <u>1968</u>, 2475.
- 6) G. Hüppi and J. B. Siddall, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 6790 (1967).
- 7) J. B. Siddall, D. H. S. Horn, and E. J. Middleton, Chem. Comm., 1967, 899.